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Abstract

Concern over limited extravehicular and intravehicular activitiy time has

increased the interest in performing in-space assembly and construction op-
erations with automated robotic systems. A technique being considcred at

Langley Researrh Center is a supervised-autonomy approach, whieh caT_ be
monitored by art Earth-based supervisor that intervenes only wh.en the au-

tomated system encounters a problem. A test-bed to support evabtation of

the hardware and software requirements for supervised-autonomy assembly

methods has been developed. This report dcscribcs the design of the software

system necessary to support the assembly process. The system is implemented

and successfully assembles and disassembles a planar tetrahedral truss struc-
ture. The software is hierarchical and supports both automated assembly

operations and supervisor error-recovery procedures, including the capability

to pause and reverse arty operation. The software design serves as a model

for the development of software for" more ._'ophisticated automated systems

and as a test-bed for evaluation of new cor_cepts and hardware components.

Introduction

A number of future space inissions will require

large truss structures, some of which will support
functional surfaces such as antennas, reflectors, and

aerobrakes. Two examples of such missions are

shown in figure 1. Figure l(a) is an astronomi-

cal observatory, and figure l(b) is a Mars mission

vehicle with a truss-supported aerobrake. Consid-

erable effort has been expended during the past
10 years toward establishing a capability of assem-

bling large space structures on orbit. (refs. 1 and 2).

A shuttle flight experiment of a large truss structure

(ref. 3) and recent truss-supported reflector designs

(ref. 4) are aimed at astronaut assembly. However,
current concern over limited astronaut EVA (extra-

vehicular activity) and IVA (intravehicular activity)

time (ref. 5) has increased the interest in performing

in-space assembly and construction with automated,
robotic systems. One particularly attractive alterna-

tive utilizes the operator as a supervisor or system

monitor, called upon only when the robotic system

requires intervention or assistance. This mode of op-
eration, known as supervised autonomy, eliminates

planned EVA for construction and reduces IVA. Su-

pervised autonomy has the advantage that it can be

performed from any location, including the ground,
since it does not require the performance of time-

critical active functions by the operator.

To date, very little effort has been directed to-
ward the development of automated robotic methods

for large truss structures. Langley Research Center

(LaRC) has developed a unique facility to support

the first detailed study of automated structural as-

sembly (ref. 6). The interdisciplinary effort focuses
on gaining practical experience in the automated as-

sembly of large, generic, truss-structure hardware de-

signed for robotic operations.

The objective of this report is to describe the

requirements and design of the software that. per-
forms the automated assembly of the truss structure
and to discuss the interface and interaction between

the soft.ware program, the system hardware, and the

operator. An initial version of the automated as-

sembly systenl has t)een developed and is currently
operational. Considerable experience has been ac-

cumulated in the assembly and disassembly of a

102-lnember tetrahedral truss structure (refs. 6 to 8).

The assembly system components are described, and
a narrative of the assembly process is given, to serve

as a basis for the description of the software and its

functions. The actual implenmntation of the design

is discussed in appendix A. Finally, an evahmtion of

the software system operation and ext)erience is pre-
sented. The purpose of the evaluation is to discuss

the success of the design in satisfying the system re-

quirements. A glossary' of terms relative to the sub-

ject matter discussed in this paper is contained in

appendix B.

Symbols and Abbreviations

AP approach point

AP_CAN canister approach point

CAP capture loeations (CAP1,

CAP2)

CLOSE, LOCK, individual actuator
EXTEND commands

GP grasp point

GP_CAN canister grasp point



INSTALL.REMOVE,
, [ACQLIRE, PROP

IP

NASREM

Pitch, Roll, Yaw

R,

REM

STORAGE

STORAGE_AP

TRAY

TRAY_AP

TRIPOD

X,Y,Z

".L', tl, Z

0

assembly functions

transition point

NASA/NBS standard
reference model

pitch, roll, and yaw
orientations of robot arm

radius

removal locations (REM1,

REM2)

storage-tray grasp point

approach point to

storage-tray canister

working-tray grasp point

approach point to
working-tray canister

capture point for pyramid
installation

x, y, and z positions of
robot arm

coordinate locations

ahmg x-, y-, and z-axes

angle of rotation, (leg

Assembly Facility Hardware

Figure 2(a) is a scheinatic of the atttomated as-

sembly facility, and figure 2(b) is a photograph of
the actual hardware system. The facility consists of

a robot arm, a motion base, a truss, an end effector,

and strut storage trays. It uses commercially avail-

able equipnlent so that it can be easily modified. The
hardware system is a ground-based research tool de-

signed to permit evaluation of assembly techniques,

strut joining and end-effector components, computer
software architecture, and operator interface require-

ments that are necessary for automate(t in-space op-

erations. A more complete description of the facility

hardware and performance characteristics is given in
references 9 to 11.

Robot Arm

The robot arm is a six-degree-of-freedom indus-

trial manipulator selected for it.s reach envelope, pay-

load capacity, positioning repeatability, and reliabil-

ity. The robot-arm computer is based on a 68000

microprocessor, and all robot-arm motions are pro-

grammed in a modified BASIC programnling lan-

guage supplied by the manufacturer.

Motion Base

The motion base includes a linear translational

carriage and a rotating turntable. The robot arm is

mounted on the carriage, which has approxinmtely
20 ft of travel in both the z and y directions, with

a positioning accuracy of 0.002 in. The truss struc-
ture is assembled on a rotating turntable capable of

six revolutions of travel and a positioning accuracy
of 0.01 in. at a radial distance of 20 ft (0.0024°).
Motion-base drive motors on the three axes are

commanded by an Intel 80286 microprocessor-based
indexer.

Truss

A planar tetrahedral truss, such as the model

shown in figure 3, was selected for initial assembly
studies because it is representative of the type of truss

structures required for large antennas, reflectors, and

aerobrakes. The truss is specifically designed for

automated assembly and includes regular hexagonal

rings. Core struts are those that connect the top face
to the bottom face. All struts are nominally 6.6 ft

long and 1 in. in diameter. The complete structure

has 102 struts and 31 nodes. Assembly begins by

connecting struts to three nodes that are premounted
on the motion-base turntable.

The truss node and joint connectors are shown

in figure 4. Two joint connectors are bonded to a
graphite-epoxy tube to form a strut. The joint has

a connector section which, during assembly, is in-
serted into a node-mounted receptacle. A locking

nut is turned by the end effector to draw the connec-

tor phmger toward the connector face of the strut,

securing the joint. The alignment arid grasp adapter
is used to grip the strut and align it precisely with
the end effector.

End Effector

The end effector is a specialized tool mounted on
the robot arm that performs all strut installation and

removal operations. Figure 5(a) is a schematic of

the end effector, and figure 5(b) is a photograph of
the end effector and its components. The strut is

grasped by a set of strut holders that close around

the alignment arid grasp adapters (figs. 4 and 5) that
are bonded to the strut tube. The strut holders are

mounted on a platform that is extended for insertion



of thestrut into tile nodereceptacles.A strut is in-
stalledinto tile trussby movingtile endeffectorto
a positionwherethereceptaclefingers(fig.5(t)))are
ableto grapplethenodereceptacle.Actuatorsclose
thefingersaroundthenodereceptacleandpassively
align the endeffectorand strut with the nodere-
ceptacle.Afteralignment,theplatformisextended
andinsertsbothjoint connectorsintothereceptacles,
wheretheyareheldwhilethe lockingnutsaretight-
enedwithnut driverson theendeffector.Thestrut
holdersareunlatchedandtile platformisretracted.
Thereceptaclefingersarethenopenedto releasethe
structure.

All end-effectorcomponentsand actuatorsare'
equippedwith simplesensors,suchasmicroswitches
and linear potentiometers,so that the computer
programcanmonitorthe operationsandalert the
operatorif a problemoccurs.Smallvideocanleras
aremountedoneachendof tileendeffectorto permit
operatormonitoringof conlponentflmctions.

A six-axisforce-torquesensor(FTS) is re(ranted
on thewristof therobotarnl to measureforcesand
momentsactingon theendeffeetor.Theoutputof
theFTSis usedto commandsmallrobot-armmove-
mentsin a directionthat will "zero"the measured
forcesandmoments.Thismovementis usedto re-
ducetheloadson theendeffectorandto enablethe
end-effectorcomponentsto operatefreely.

Trays

The trussstrutsarcstoredin ninetrays,which
arestackedin theworkingcanisterdirectly behind
therobotarm(figs.2(a)and2(b)). Emptytraysare
transferredbypickingthemupwith theendeffector
and movingthemto the storagecanister,which is
locatedon onesideof the robot arm. Thestruts
are removedfroln the tray by positioningthe end
effectoroverthestrut,extendingtheplatformsothat.
the strut holderscontactthe alignmentand grasp
adapters,andlatchingtile strut to theendeffector.
Theplatfornlis thenretractedto withdrawtile strut
from thetray. Eachtray hascylindricalhandleson
bothends;thesehandlesarefitted with positioning
andalignmentadapters,whichallowtheendeffector
to pickupemptytraysfi'omtheworkingcanisterand
transferthemto thestoragecanister.

Assembly Process

Theassemblyprocessbeginswhentheendeffec-
tor acquiresthefirst strut fromthetop tray ill the
workingcanister. Oncethe strut is acquired,the
motionbaseis positionedsothat therobotarmcan

connecttile strut to thestructure. Therobotarm,
movingthroughasequenceofpredeterminedpoints.
positionsthestrutat.itspointofinstallationorgrasp
point. Theendeffectorthen insertsand locksthe
strut intoplace.Finally,therobotarmreturnst.othe
workingcanisterto retrieveanotherstrut. Thisbasic
operationalsequenceis followedfor the installation
of all struts.Eachpart of thesequenceisdetailedm
tile sectionsthat follow.

Acquiring a Strut From the Tray

Each strut has a preassigned tray nmnber and a

slot. location. The end effector is positioned at the

canister approach point (a t)redefined point at the

top of the working canister), which is directly over

the desired strut in the tray. lXeceptacle fingers are

closed to prevent collisions with preattached nodes

on adjacent struts remaining in the tray. The end ef-
lector is lowered to the canister grasp point (the level

of the tray containing the strut), so that extending

the platform causes the strut hohters to lightly con-

tact the strut alignment and grasp adapters. When
the platform extends, the force-torque algorithm bal-

ances the forces and moments acting on the end effec-

tor while slowly applying a maximum of 20 ltff in the
downward direction to close the strut holders. After

the strut holders are latched, the forces and torques

are ret)alanced. The platform is then retracte(l, and

the strut is lifted from the working canister. From

the working canister grasp point, the strut is carried

to the canister approach point, where lhe receptacle

fingers are opened in preparation for the installation
operation.

Motion-Base Moves

Associated with the installation of each strut are

the carriage and turntable positions (x, y, and 0)

required for installation. The curren! carriage
and turntable positions, the required carriage and

turntal)le t)ositions for tile strut being installed, an(l

the status of the structural asseml)ly are used to de-

termine if the carriage and/or robot arm will collide

with any struts that arc currently assembled. Tile
motion-base repositioning commands can be per-

formed in any order. All motion-base moves are per-

fornled with the rot)ot arm positioned at the can-

ister approach point to minimize the distance the

robot arm extends toward the truss; this position-
ing reduces chances for collision. The motion-I)ase

collision-avoidance algorithm is described ill detail
in the section "Motion-Base and Collision-Avoidance

Design."



Robot-Arm Paths

The robot arm traverses a predetermined path to

deliver tile strut to the proper location and orienta-
tion in the structure. There are three strut instal-

lation cases: direct, capture sequence, and pyramid

completion. For direct installation, tile end effector

and strut are carried directly to the grasp point, a
predetermined location where tile strut can be in-
stalled into the structure. Direct installation entails
either the insertion of a strut, between two fixed nodes

already in the structure or the installation of a strut
with a preattached node at one end. For struts with

prcattached nodes, the end effector only operates the

receptacle fingers and locking component at one end
and leaves tile strut-node combination cantilevered

from the fixed node to which it is installed in the

structure. The installation of a strut with a pre-

attached node creates the capture-sequence installa-

tion, which requires the end effeetor to install a strut
between the free end of a cantilevered strut (deflected

by gravity) and another node in the structure. For

this case, the end effector must be positioned so that
the receptacle fingers on one end grasp and capture
the cantilevered node. The robot arm is then moved

so that the receptacle fingers on the opposite end can

grasp the node in the structure and so that both ends
of tile strut can be inserted and locked into place.

The pyramid-completion installation case per-

forms the installation of a third strut into a pyra-
mid substructure. This installation is similar to the

capture-sequence installation, except that the node
being captured already connects two struts. For the

pyramid-completion installation, t.hc deflections due

to gravity are not as large as in the capture-sequence

installation. The robot arm is again moved to the

grasp point after node capture of the two connected
struts where the strut is inserted; this move com-

pletes the pyramid configuration.

In addition to the three installation cases, there

are two removal cases that arc necessary for dis-

assembly: free and direct. The free removal case
involves cantilevered struts with preattached nodes

that are deflected as a result of gravity. Tile robot

arm must move to a predetermined point and close

the receptacle fingers to capture the cantilevered end.
It then continues to a second predetermined point

to avoid node receptacles of installed struts before

proceeding to the grasp point, where the strut is
removed from the structure. The direct removal case

applies to all other struts. The robot arm traverses
a straight path directly to the grasp point. The end

effector receives commands during the path sequence
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to perform tasks such as closing receptacle fingers to

capture nodes at the proper locations.

End-Effector Operations

When the robot arm reaches the grasp point for
the strut, control is transferred to the end effector. A

strut installation includes closing the receptacle fin-

gers on the node receptacles, extending the platform

to insert the strut into the receptacles, locking the
strut into place, unlatching the strut from the end

effector, retracting the platform, and opening the re-

ceptacle fingers. Sensors are monitored after each

step, and the sequence does not proceed unless the

operation is successful.

System Software Requirements

The autonmted assembly system software was de-
veloped to support projected assembly system re-

quirements. These requirements were generated by

an interdisciplinary group of hardware designers, pro-
grammers, engineers, and prospective users of the

system. The participation of a wide range of dis-

ciplines resulted in a software design that has not
changed appreciably during the evolution of the sys-

tem. These system requirements are discussed fur-

ther in the following section, and the requirements
for the three devices motion base, robot arm, and

end effector are discussed in subsequent sections.

Overall Requirements

The overall system requirements are as follows:

(1) to assemble and disassemble the tetrahedral truss

in an automated mode; (2) to provide sufficient in-

formation displays and control capability to support
a supervised autonomy mode of operation; (3) t.o in-

terface with advanced systems, such as plaimers; and

(4) to accommodate assembly system hardware and

procedural upgrades.

The requirement to provide the capability for

a fully automated assembly and disassembly estab-

lished the need to know the predetermined condi-

tions that direct the assembly process, the current

state of all system hardware devices, and the current
state and location of every strut in the truss struc-

ture. Predetermined conditions include the geometry

of tile structure, path sequences, strut storage infor-

mation, motion-base moves for strut installation, and

potential obstructions during motion-base moves.
The software must include algorithms and procedures

for gravity-deflected strut capture, motion-base col-

lision avoidance, and error recovery. When perform-

ing the assembly task, the software must command



andsequencetile motionbase,robotarm,andend-
effeetorhardware,andmustprovideinterfacesforthe
supervisor.Becauseeachofthesystemhardwarede-
vicesisan independentsubsystemthat mustbeco-
ordinatedduringassenfl)lyoperations,thesoftware
designmustaccommodateadistributedarchitecture
to providelocaldevicecomponentcontrol.

Thesoftwarerequirementsarcdrivenby a need
for a userto monitor and effectivelymanagethe
operationof the automatedsystem. The role of
the systemsoftwareuserandthe userinterfaceis
thereforedefinedasfollows:

1. Theuserisconsideredto bea supervisorbe-
causesystemoperationis primarilyin anau-
tomatedmode.

2. Supervisorinteractionisrequiredonly for er-
ror recovery.

3. Supervisormonitoringis supportedwith as
muchtaskandstatusinformationaspossible.
Thisinformationmustbeclearandconcise.

4. Thesupervisormayinterveneat.anytime to
changetasks or requestinformation. This
interventionincludespausingthe automated
sequencesto lookat videodisplaysorassembly
detailsbeforeeitherresumingorreversingthe
task.

5. Thesupervisorhasoverridecapabilityoverall
automatedfunctions.

6. Thesupervisorisnot.responsiblefor dataand
statusupdatesresultingfromcommandedac-
tions.Theseupdatesoccurautomatically.

7. A secondarymanualor checkoutmodeallows
thesupervisoraccessto all levelsofcommands
anddatasothat all automatedflmctionscan
beduplicatedand analyzed.Systeinstatus
checksare performedprior to executionof
all supervisorcommandsto avoiddamaging
actions. Accessto the lowercommandlev-
elsis restrictedto experiencedor authorized
supervisors.

8. Threemodesof supervisorinput arerequired:
keyboard, command file, and assembly-
sequencefile. Tile keyboardmoderequires
the supervisorto entereachcommandman-
ually.Thecommand-filemodealleviatessome
typing by allowingthe supervisorto create
a file of theactualcommandsthat wouldbe
enteredinteractively.Thecommand-fileexe-
cutionshouldparallelthe performanceof the
systemin thekeyboardmode.Theassembly-
sequencefileisa higherlevelcommandfile. It

containsgeneralassemblyanddisassemblyse-
quences,includinganorderedlist ofthestruts
to beinstalledor removed.Thesystemtrans-
latesthe assembly-sequencefile into a com-
mandfileoftileactualsystemcommands.The
systemallowsthe supervisorto performon-
linecreation,modification,anderrorrecovery
of thecommand-andassembly-sequencefiles.

The third overallrequirementis the ability to
interfacewith advancedsystems. Undercurrent
considerationare knowledge-based,expert system
controlofassemblyflmctions,path-planningtoolsfor
therobotarm,andmachinevisionto providerobust
systemoperation.

Thesoftwaresystemnmstaccommodateassembly
systemhardware,computerhardware,andprocedu-
ral upgradesthat resultfromoperationalexperience.
Oneproceduralupgradethat becameapparentdur-
ingthedevelopmentprocesswastheneedto reverse
theassemblyprocessaftera pauseorunresolveder-
ror. Thiscapabilityimprovessupervisorconfidence
in the automatedsyst.emoperationsand providesa
powerflflerror-recoverytechnique.Whenan error
cannotbecorrected,the systemautomaticallyini-
tiatesa reversesequenceof commandsandrelieves
thesupervisorof havingto remembertheproperse-
quence.This reversesequenceimposesa significant
burdenonthesoftware,however,becausethereverse
sequenceis not necessarilytheexact,oppositeof the
forwardsequence.An exampleof the ability to ac-
commodatenewhardwareinvolvestheincorporation
ofnewendeffectorsforadditionalassemblytasksand
advancedoperations.

Motion-Base Requirements

Themotionbasemustpositionthecarriageand
rotatingturntat)letothecorrectx, y, and 0 positions.
The z, y, and 0 positions are expressed as either
absolute locations or moves relative t.o the current

position. The x, y, and 0 moves may execute in
any order, and each move is verified before the next

move is begun. The motion base should be able

to move to predefined locations or receive a direct

move instruction from the supervisor. Before any
movement of the motion bases, collision-avoidance

logic must determine the order of moves that will

keep the motion base from hitting the assembled
struts.

A pause option for the motion base includes

the ability to manually adjust the current position.
When reversing the motion base, the forward se-

quence is retraced.
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Robot-Arm Requirements

The robot arm is requiredto traversepre-
determinedpathsforstrut installationandremoval,
for movingthe traysto andfromthestoragecanis-
ter, andfor changingthe endeffector.Therobot-
armprogramnmstbeableto accesstheend-effector
commandsdirectlyto avoidobstaclesandperform
capture tasks.

For the strut paths, the robot arm is required to

automatically move sequentially in either direction

through a series of intermediate positions that de-
pend on the strut installation position in the truss.

There arc 19 unique paths used during the assembly
of the truss structure. The software must be able to

select the correct path for each strut, including the

capture of gravity-deflected cantilevered struts.

The robot-arm reverse is not always the opposite

of the forward sequence for the strut paths. Details
of the reverse are discussed in the section "Robot-

Arm Path Design." The reverse sequences for tray

operations and end-effector changes are exactly op-

posite of their forward sequences. As with the motion
base, the pause option includes the capability for the

supervisor to adjust the robot-arm position.

End-Effector Requirements

The end-effector software must be able to gen-

erate sequences of actuator commands to perform
four basic assembly functions: install, remove, ac-

quire, and drop. The system must be able to ac-

cess the actuator commands, monitor sensor outputs,
and perform sensor conflict checking after each actu-

ator conmmnd is executed. The software design must

be able to support various end effectors, such as the

addition of a panel end effector for future assembly
operations.

End-effector error conditions detected by the sen-

sors are displayed for the supervisor. The super-

visor has the option to manipulate the end-effector
actuators directly, reposition the robot arm to permit

the actuator to function properly, continue execution

when the error is not deemed serious enough to war-
rant action, or abort error correction and allow the

system to reverse. For the end-effector functions, the

reverse is not always the exact opposite of the for-

ward sequence. The error-recovery software provides
the option of executing automatically or manually.

The end-effector software must provide direct access

to the robot-arm commands to reposition the robot

arm or to balance the forces and torques acting on
the end effector.

System Software Design

Although the assembly system is intended to op-
erate in a fully automated mode, it is imperative that

the supervisor be provided with appropriate internal
information and have sufficient command access and

authority to deal with assembly problems. For this

reason, the automated assembly system software de-
sign is approached primarily from the supervisor's

viewpoint. A command hierarchy makes the control

process simple and orderly. The result is a modular
software structure that coincides with the hierarchi-

cal nature of automated operations. The following

sections provide the details of the software design.
Appendix A provides some insight into the actual

implementation of the design.

Design Overview

Design Layout

Figure 6 shows the design layout of the automated

assembly program. It comprises four basic levels:
administrative, assembly, device, and component.

Because of the natural hierarchy of the assembly pro-

cess, a top-down design philosophy is used; this phi-

losophy causes the highest level commands to appear
first and successively decomposes to the lowest-level

component commands. The software design process

is based upon the assembly sequence described pre-

viously and the requirement that the supervisor have
access to all levels of detail.

The administrative level is involved with the pre-

liminary setup of the system. It allows the supervisor

to examine and modify data and system options. The

command and assembly files can be selected, created,
and modified. Also, the supervisor gains access to the

lower levels of the system through the administrative
level.

The assembly level reflects the automated aspect

of the system. At this level_ the software manages

all the devices, data verification, and error recovery.
Command operations at this level for assembly and

disassembly of the truss are all automated. This level

interfaces with a proposed automated task sequence
planner. The standard operating mode occurs at the

administrative and assembly levels.

The device level gives the supervisor access to
each individual device and to the functions the de-

vice performs. To obtain and install a strut requires

action by three separate devices: the motion base,

the robot arm, and the end effeetor. Decomposition
of the commands at the assembly level results in a se-

quential list of device-level commands. The functions

associated with each device are taken directly from



therequirements.Accessto this levelrequiresmore
expertiseon thepart of tile supervisorandinvolves
lessautolnaticcheckingby tile software.

The componentlevel reflectstile hardwareca-
pabilityof the currentsystem.Eachof tile device
commands,suchas the emt-effectorinstall con>
mand(INSTALL)decomposesinto individualactu-
ator commands(e.g., CLOSE, LOCK, EXTEND)
which are the basic tasks perforlned by the hard-

ware. Sensor checking and verification occurs af-

ter execution of each colnponent conunand. This

level is dependent on the specific devices used and

could change if the hardware changes an impor-

tant aspect to consider in the software design and
implementation.

Menu Interface

A menu-driven, rather than a command-driven,
interface is used in all effort t.o reduce the numl)er of

comnmnds at. each level and the amount of internal

syst.em ilffornmtion presented to the supervisor. The
menu-driven command structure also accommodates

relatively inexperienced supervisors. Figure 7 shows

the basic menu layout for the system; the layout
was derived directly from the design in figure 6.

The melmS reflect the actions required to control the

hardware and assembly process.

Each box represents a menu on the supervisor's
display. Menu selections can be designated by ei-

ther tile nuxnber or the first unique characters of the
conmland. Tile lines between boxes indicate how a

supervisor traverses the various levels of the system.

Every menu contains "help" to aid inexperienced su-
pervisors by providing information about each selec-

tion. As a sele(:tion is made, the item is highlighted.

Tile menus are overlapped on tile screen as they' are

selected (fig. 8) to provide the supervisor with infor-
mation from every level. Everything entered by the

supervisor is recorded in a journal file that is awfil-

able for post-test analysis.

Command Decomposition

The nlain menu (figs. 7 and 8) displays tile four

major components of the systenl. Selection 1 (Sys-

tem configuration) allows the system configuration

paranmters and variahle status to be displayed and

modified. Selection 2 (Auto build) initiates auto-
mated assembly according to a predetermined as-

sembly sequence contained in a predefined assembly-

sequence file. Selection 3 (Assembly fimctions) allows

access to the manual command mode, which provides

the supervisor with conunand capability at all levels

of tile autonmted system. Selection 4 (File manipu-

lation) permits selection and editing of an automated

assembly-sequence file or a command file; these files
are discussed in the following section.

Selection 3 reveals subsequent hierarchical menus

in which higher level menu conunands are comt)os-
ites of lower level nlenu comman(ls. The lowest hwel

menus are the component-oriented commands thai

are directly associated with the hardware of the sys-

tem. All commands incorporate internal, automalie

checking to protect the hardware from supervisor-
controlled commands that could resull in hardware

dalnage. As the supervisor works down the menu

hierarchy, control and resl)onsibility shifts from the

automated system to the supervisor. The lower level

menus rely on supervisor expertise: lllereforo, many
of the lowest nlenu levels and some error nlenu selec-

tions are password-protected or have hidden mtqm

options.

The composite conunands are higher level lnenll

entries that initiate a seqltence of colnnlantts It) per-
form the selected task. Figure 9 illustrates compos-
ite coinmand Fetch and connect. As each command

is executed, the ,_ssociated menu is displayed and

highlighted. This layered menu presentation allows

tile supervisor to moIfitor the sequence of hit'rarchi-

cal conmlands and provides a trace to aid in error

recovery.

An error-recovery menu is displayed to the su-

pervisor when sensor checks indicate that a syslenl

component did not flmction t)roperly. The sysletn

will not proceed until l.he t)rol)lenl is resolved. If

a problem cannot be corrected, error informal ion is
passed back through the s vstenl hierarchy and causes
the commanded actions to reverse their task.

Supervisor Input Mode,s

There are three Inodes of sut)ervisor input: (tirect

keyboard, command file, and assembly-sequence file.

as defined in the requirements. The keyboard intmt
inode requires the supervisor to enter eac]l lneilu s('-

lection from the keyboard. The command-file mode

allows tim sut)ervisor to create a text file of the con>

mands as they wouM be entered in the keyboard in-

put mode. Tile system obtains its input from the file,
so that the supervisor is freed for nlonitoring. This

freedoin is t)articularly helt)ful for rel)etitive tasks.

A command file is executed through selection 4 (File

manipulation) from the main menu. This m(mu also

allows the supervisor to create a. conmmnd file (Build

command bile) and inodi_ an existing conlmand file
{Edit conlmand file) without exiting the program.



Limitedon-linecorrectionof thecommandfile is
availablewhenan illegalcommandis encountered.
Executionis suspendedandthe command-fileerror
menuisdisplayed,asshownin figure10.Thecurrent
line in the commandfile, the commandcontaining
the error, the next command,and a list of actions
availableto the supervisorare displayed. In the
exampleshown,the currentcommandfile contains
an incorrectcommand.The supervisorshouldpick
selection1 (Correctcurrentcommand)andwill be
promptedto enteranewcommand.Aftercorrecting
thecommandfile, thesupervisorcanexecutethefile
twoways.Selection2 (Re-executecurrentcommand)
will executethecorrectedcommand,incrementthe
commandfile to the next line, and return to the
command-fileerror menu. This optionallowsthe
supervisorto insert commandsand executethem
oneby one. Thesecondwayto initiate execution
is by pickingselection3 (Continueexecutionwith
currentcommand).Thisoptionstartsexecutingat
the correctedcommand,continuesexecutionfrom
this point, andexits the command-fileerrormenu.
Thisoptionissimilartoselection4(Executethenext
commandandcontinue),but this optionbeginsat
thenextcommandandskipsexecutionofthecurrent
conlnland.

In situations where many commands need to be

modified, it may be more efficient to abort the
command-file execution mode and edit the command

file. The command file may be edited without exit-

ing the program by selecting main menu item 4 (File

manipulation).

The third input mode, an assembly-sequence file,
executcs like the command-file mode, but the format

is independent of the actual commands entered. The
format is simplified and the software converts the

file into the commands required by the system. The

assembly-sequence file format is as follows:

Assemble

strutname a

strutname b

Disassemble

strutname c

strutname d

End

The supervisor has the option of creating and modi-

fying these files without exiting the system.

Robot-Arm Path Design

The robot arm has three tasks to perform:

(1) traverse strut paths for installation and removal;

(2) transfer trays between the working and storage
canister; and (3) change the end effector. Transfer-

ring trays and changing the end effector are fairly

straightforward tasks. Traversing the strut path is

more complex because of the intricate orientations
necessary to locate the strut in the structure without

interference from previously installed struts. Robot-

arm tasks are detailed in the following sections.

Logic ofStrutPath State

The robot-arm path from the strut storage canis-
ter to the structure and return has been divided into

segments or path states. The exact path traversed

depends upon the current strut location in the struc-
ture. The state is the current coordinate location of

the robot arm (X, Y, Z, Roll, Pitch, Yaw). The
states defined for this study are illustrated in fig-

ure 11 (GP_CAN AP_CAN, IP, AP, and GP). This

illustration typifies the simplest sequence of moves

required to carry a strut between the canister and
the structure.

The robot-arm rest position and the point at

which it begins a strut retrieval is located immedi-

ately above the canister and is designated the can-
ister approach point, AP CAN. The strut is picked

up at the canister grasp point, GP CAN, and car-

ried back to AP_CAN. A transition point, IP, is

passed through before the strut is carried to the
structure approach point, AP. The transition point
is where a transition occurs from a canister-oriented

path, which involves a tray and slot number, to an

installation-oriented path that is dependent on the
strut location in the structure. The approach point

is approximately 4 in. from the grasp point at the

structure, GP, where the strut is actually installed.

Figure 12 is a complete diagram of the robot-arm

state paths, including capture operations. The fig-
ure indicates the strut installation and removal cases,

which determine the various paths, as well a.s con-

ditions for performing end-effector actions. Condi-

tional states, denoted by dashed boxes, from AP to
GP are special cases required for various strut can-

tilever conditions. The conditional state positions en-

able the robot arm to capture cantilevered struts and

avoid collisions with node receptacles while lining up
the strut at its location in the structure. The states

are represented by solid boxes, and the arrows be-
tween the states represent transitions between states.

End-effector receptacle finger actions, as shown by



the ovals,are requiredat variouspointsalongthe
path sequence.The robot arm passessequentially
from onestateto the next whenmovingbetween
the canisterandthe structure.Thearrowheadsin-
dicatethedirectionsallowedbetweenstates,condi-
tionalstates,andend-effectoractions.Theonlytime
the systemcanterminatebetweenstatesis whena
hardwarefailureoccurs.

Whendeterminingtherequiredpathfromstateto
state,thepathswithconditionsareconsideredfirst.
Theunconditionedpathis takenonlywhennoneof
theconditionsfor captureoperationsaremet.Cases
existfor whichthe reverseconditionsdonot mirror
theforwardpath. Whentherobotarm is following
apath throughasequenceanda reverseis initiated,
thearrowheadsarefollowed.If noarrowheadpoints
in thereversedirectionalongthepath,anewpathis
determinedbycontinuinguntil astateor conditional
stateis reachedthat containsanarrowheadin tile
reversedirection.

ThepathbetweenAP andGP is dependenton
theinstallationor removalcase,asspecifiedby end
conditionsof tile strut. Strutsthat attachto fixed
nodesandthosethat areattachedat only oneend
proceeddirectlyfromAP to GP(directinstallation
case).Strutsthat mustcapture previously installed
cantilevered struts move through points CAP1 and

CAP2 to perform the capture maneuver (capture-
sequence installation case). Receptacle fingers are

closed at CAP1 to capture the node, and for those
installations that require the capture of two nodes,

receptacle fingers on the opposite end of the end effec-

tot are closed at CAP2. The struts that capture only

one node also travel to a CAP2 point but do not close

the fingers before proceeding to GP. Maneuvers that
capture the node of a connected pair of cantilevered

struts perform the capture at a point called TRIPOD

(pyramid installation case). The newly connected

strut completes a pyramid configuration.

The struts that are attached only at one end

are left cantilevered, and gravity causes them to sag
when they are released by the robot arm. The robot

arm must move to the deflected points before re-

leasing these struts to avoid entangling the recep-

tacle fingers on the node receptacle. The same is

true when removing the strut. A set of points des-
ignated REM1 and REM2 are used for cantilevered

struts (free-removal case). The consistency of strut

deflections makes it possible to use predetermined

points for the capture and remove (CAP, REM) lo-

cations. The gravity-induced strut deflections and
predetermined points are not viable in space appli-

cations. Deflections in the zero-gravity environment
are smaller, but are in random directions; this ran-

donmess dictates the use of sensors such as machine

vision. However, the concept of robot path segments

for retrieving combinations of struts and nodes and

for avoiding previously installed node receptacles is
still valid.

The supervisor may interrui)t a move at any

point. A supervisor pause stops the robot arm
immediately and displays a pause m(mu on the screen

(fig. 13). The supervisor can then proceed from the

point of interruption, adjust the robot-arm position,

or return to tile originating state. The supervisor

nmst be aware that this originating state is not the

previous state in the path, but the originating state
of the sequence. For example, if the robot, arm is

currently at AP_CAN and commanded to move to

GP, a pause-reverse requested at AP causes it to

return to AP_CAN. Tile robot-arm motion may be
paused and reversed as many times as tile supervisor

desires this process acts as a toggle to change the
robot-arm direction.

Logic of Tray Path State

The tray path states are less complicated than
the strut, path states. Figure 14 illustrates the

four states for tray storage (TRAY, TRAY_AP,

STORAGE_AP, STORAGE). To move a tray from

the working-tray canister to the storage-tray canis-

ter, the robot arm must first move from tile approach
point to the working-tray canister (TRAY AP). The

robot arm then moves down to the tray grasp point

(TRAY) and picks up the tray exactly as if it were

acquiring a strut. The tray is carried back to the ap-

proach point (TRAY_AP) and then to the storage-
canister approach point (STORAGE_AP), which is

located at the top of the storage canister. The

tray is then moved down to the storage grasp point
(STORAGE) and is released in the same manner as

a strut being placed in the canister. After releasing

the tray, the robot arm retraces its path back to the

working-canister approach point and is ready to re-

sume strut installation. To retrieve a tray from the
storage canister, the same path is followed, except

that the pickup is performed in the storage canis-

ter and the release in the working canister. There

are only two tray operations: storage and retrieval.
Once an oper'ation is selected, execution proceeds se-

quentially with no decision points.

Logic of End-Effector Change

The path logic followed for changing the end
effector is the same as that for moving the trays.

The end-effector storage approach point, the actual

storage grasp point, the retrieval approach point,
and the retrieval point are predetermined locations.



Therobotannfirst proceedsto tile storageapt)roach
point and then to the storagegrasppoint. After
disengagingtheendeffector,the robotarm returns
to tile storageapproachpoint andthenproceedsto
theapproachpointoftheendeffectorto beretrieved.
Therobotarmthencontinuesto theretrievalgrasp
point,attachesanewend effector, and returns to the

retrieval approach point.

Motion-Base and Collision-Avoidance

Design

The current motion-base controller eonunands

Inove in a sequential manner, one axis at a time.

The z, y, and 0 positions associated with a partic-
ular strut installation are either obtained from pre-

defined locations or input by the supervisor. Before

any motion-base repositioning is initiated, a collision-

avoidance algorithln is executed to determine the or-
(t(_r of sequential moves that will prevent collisions
with the structure. A new axis move is initiated only

after the previous move is complete.

The sut)ervisor nmy intervene and pause at any

time during the fnove sequence. In the paused condi-

tion, the oI)t.ions are to eontimm, adjust, or revers(,.
The adjust, accepts an intermediate set. of positions

fl'om the supervisor. \\'hen reverse is selected, a re-
trace of the forward sequence is executed.

The collision-avoidance logic deternlines the order

in which carriage nlovt.s must be peifornm(t to pre-
vent the carriage and robot arm from colliding with

any part of the structure already assemt)led on the
turntable. Collisions can occur during z-axis moves

when traveling toward the structure, and during car-

riage y-axis nloves and turntable rotations if the car-

riage is positioned too close to the existing structure.
For z-axis inoves, collisions occur between the car-

riage and the installed bottom-face struts. For y-axis
and turnable moves, the elbow of the robot arm and

the handles of the empty trays that protrude from

the storage canister are the two potential collision

points. (See fig. 2(a).) A set of tests are used to ex-
amine each of the two potential collision points. Only

the installed core struts (those which connect the top
and t)ott.om faccs of the truss structure) are consid-

ered for collision because they are at the same height

as the elbow and tray handles. All calculations for

collision avoidance are perforlned on-line prior to the
installation of each strut.

Figure 15 defines the nomenclature to be used in
the discussion of the collision-avoidance problem. As-

sociated with each strut is the point where a collision

can ()(:cur (strut end point) and the angle 0stru t be-
tween the radius of this point Rstrut and the turntat)le

10

x-axis reference line. Collision avoidance is discussed

for an x-axis move, a y-axis move, a turntable rota-

tion, aim a combination of y-axis move and turntable

rotation. The y-axis move and turntable rotation

algorithms are applied twice to check for potential

collision problems with the robot-arm ell)ow and then
with the tray handles. The following text outlines the

algorithm used for collisions that may occur with the
elbow.

Logic for z-azis move. The z-axis carriage moves

are not a primary concern in collision avoidance be-
cause of the structural configuration of Automated

Structures Assembly Laboratory. The use of tile pre-

defined points guarantees the proper clearances. The

z-axis move algorithm is only necessary when the su-

pervisor has requested direct access to the motion
base and has thereby manually entered the coordi-

nates. Collision avoidance is performed for z-axis

moves that position the carriage closer to the struc-
ture. An z-axis collision occurs when any installed

bottom-face strut intersects the new carriage posi-

tion. When this happens, the move is illegal and not

performed by the system.

Logic for y-azis move. Figure 16 illustrates the
collision-avoidance algorithm for a y-axis carriage

move. The radius of a potentially obstructing core

strut Rob s is the distance from the center of the
turntable to the end of the strut farthest from the

turntable. This radius is represented by a line ex-

tending from the turntable center. The desired or

next position of the carriage is depicted in the figure

by dashed lines.

Two tests are performed to identify potential col-
lisions. In the first, test, the smallest absolute an-

gle (fig. 16) is computed between the z-axis refer-
ence line and the obstructing strut 0o},s, tile current
robot-arm radius 0start, or the desired robot-arm ra-

dius 0end. When tile angle of the strut radius lies

outside the robot-arm angles, the move can be per-

formed (case 1). When 0oh s lies between the two an-

gles formed by the robot-arm radii (cases 2 and 3),

a collision may occur and a second test. must be

performed.

In the second test, a new carriage radius Rca,.r is

computed and the carriage location is assumed to be
at the point of the obstruction. The carriage radius

is depicted in the figure by the bracket and the radius

of tile obstruction Rob _ is the length to the dot. This
new radius is then compared with the strut rmlius of

the potentially obstructing strut.. If the strut radius
is less than the carriage radius (case 2), the move

can proceed. When the strut radius is greate," than

the carriage radius, corrective action must be taken



(case3). Beforethemovecanproceed,the.carriage
mustbemoved|)aekill the:r direction.Thedistance
of this move,with a safetyfactor,is ('omputedfrom
the lengthof the strut radiusandthe angleof the
obstructionasfollows:

:r.i_l,.,.. - &,._. cos (0,,_,_)

Logic for turntable _vtation. Figure 17 illustrates
the collision-avoidance algorithm for a turntable ro-

tation. In case 1, the strut radius /?oh s is compared

with the carriage radius Rcarr. If the st:rut radius is

greater than the carriage radius, t.hc turntable rota-
tion direction is examined, as in case 2. The angles

are calculated for 0cart, 0start, an(t Oe,,l. The angles

are compared, and the turntable can t)e rotated if

0cart > 0end and 0<_d > 0s,_rt. Otherwise, case 3 gov-

erns, an(t the carriage must retrea! ill the x direc-

tion before performing the move. The dislance of
the :r-axis move is colHIlllted in the same lllanller as

that for the y-axis tllOVe as follows:

"rdistance = Rstar _ COS (0car,')

Logic for combination y-axis and twrntabh: rota-

tion. A scenario is assumed in which the y move
occurs before the t urntaIfle rotation. If no retreat in

the x direction is necessary, the move is complete(t;

otherwise, a tm'ntaI)le rotation followe(t 1)y a !;-axis

move is considered. If this combination proves col-
lision free, it is execltte([. \Vhen a retreat in the

.r direction is necessary for both com|)inations, the

eom|)ination is performe(1 that produces the smallest
move in the :r direction.

End-Effector Design

Initially, the en(l-effector task was to generate

actuator eOllllllalid seqlleIwes for the four asseln-

bly time(ions (INSTALL, IiEMOVE, ACQUIRE,

DROP) an(1 to monitor sensor output. However, op-

erational experi(mce establishe(l a need to t)rovi(te

effective error recovery. Error-recovery techniques

were developed as the error sources were identified
during actual assemMy operations. The Im('(t tbr the

pause and reverse capability for the supervisor, and

the ability to reverse following an uilresolve(t error,

significantly contt)li(:ate(t the sequen(:ing algorithm.
Much more software was require(t to implement these

fm_ctions than was originally anticipate(t.

End-Effcctor Componcn, t Commands

The end-effector colnponent comnla,nds (:(mtrol

the actuators anti are the lowest level accessible to

the Slq)ervisor. The en(l-effector hardware is shown

in figure 5(t)). The en(t-efl_wt()r comt)()n('nt c()m-

man(is an(t a I)rM' ext)lanation of each task follow:

OPEN/CL()SE C()mmamts the re('('l)-
tat'l(' fingers 1() Ol)('n or
('lose

EXTEND/FIETRACT Commands a Imeumat -

ieally a('t ual e(l plal-
form It, t)e ext('n(h'(t ()r

retract('(t trashing (>r

pulling a st rul

IX)CK/UNLOCK St,cures or releases th(,
slrut t.()()r from lhe

st rll('l liFe

LATCII/UNLATCH (_()nlnlalldS a I)air ()f
stI'lll hold(,rs t() oh)s(,

or open ar(mn(] lhe

alignment and gras I)

adapt ers lo('at ed on
the strut

There is a set of recei)tach' fingers on each end

of the end efDctor and a locking lltlt OI1 each cll(]

of the strut. Therefor(,, the ()I)EN/CL()SIq and

LOCK/UNLO('K c()mman(ts can t)(' ex(wuted in(ti-

vidually for the left si(h' anti the right side. The ('n(l-

effector t)latf{)rms anti strut hol(hws ()n l)olh ends ()f
the end (,ffe('tor work simultanc(msly.

Each of these elem('ntal ('()nit)orient ('on)lnan(ls

implies a self-contained task that is t)erfl)rnwd by
the en(t-cfl'('etor softwar('. Tim cOral)On(rot sensors

arc ehecke(| prior to issuing a('tuat()r (_()IlllIHtll(tS, all(t

tile softwaI'(' issues t}l(' Colnnmll(| wh(m the sta|us is

not in the (lesire(I state. Assembly l)roeee(ls if sensor
checking indicates (hal |lip ()t)(q'ali(m was suc(:essful;

otherwise, till error is returned and the software is

suspended at this poinl until the error is resolve(t.

End-Effrctor FuT_ctions

The el)era( i(ma.1 sequen('es f()r th(' en(l-(qfe(:tor as-

semI)ly functions are (h_s(Til)(,(t h) this set:lion. Tlwse

functions rei)resent the (tevic(,-hw(q end-ef[e('tor com-
IllaIl(]S all(| are llla(te lip ()[ a s(,(tll(,iic(, of eOillpOll(,ilt

comman(ls. Th(" fmwtions and a brief explanation of
each task follow:

ACQI_II{E

Dt_()P

l)ieks nit a strut front tlw tray
att(l retains it, in the end effe('t()r

Puts a strut into t,he tray and
releases it from the end effector

11



INSTALL Insertsandlocksa strut intothe
structure

REMOVE Unlocksa strut andremovesit
fromthestructure

The componentcommandsare shownin fig-
ures18(a)to 18(d)for the device-levelcommands
discussedin the precedingparagraph.Figure18(a)
showsthe sequencefor the ACQUIREcommand.
The column oil the left lists the sequence of end-

effector component commands and robot-arm corn-

mands that perform the function. The right col-

umn, reading up, contains the sequence to reverse

the ACQUIRE command. The reverse sequence is
not the opposite of the forward sequence.

The first component command issued in the

ACQUIRE sequence is to UNLATCH the strut grip-

pers as a precautionary or safety feature. Next, the

platform EXTEND is executed and is followed by the

automatic force-torque algorithm (BALANCE FTS)
to accurately align the end effcctor with the strut be-
fore the strut holders LATCH. A second BALANCE

is executed after the LATCH, so any alignment er-
rors that occur during the LATCH are relieved and

the strut pulls smoothly from the canister during the

platform RETRACT. At this point, the ACQUIRE

sequence is complete and the status is updated to
reflect the fact that the end effector is now carrying
the strut.

A pause capability is available for all end-effector

functions and may be initiated at any point in the

sequence. When the supervisor pauses, the pause
menu is displayed; at this point the supervisor can

resume operation by either continuing with the next

step or initiating the reverse sequence. The sequence

may be repeatedly reversed.

The implementation of the other three end-

effector fimctions (DROP, INSTALL, and REMOVE)
is similar to the ACQUIRE implementation, and

their command sequences are shown in figures 18(b)

to 18(d).

Error Recovery

Error conditions detected by sensors are reported

to the supervisor for selection of error-recovery ac-

tions. Two types of actions are possible--the end-
effeetor actuators can be manipulated, or the robot

arm can be repositioned to permit the component

to function properly. The robot-arm motions are ei-
ther supervisor-controlled adjustments in robot-arm

position or products of the automatic forcc-torque

algorithm. All error-recovery actions are selections

from menus specific to each particular error, with the
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exception of the the force-torque algorithm, which
is automatically invoked by receptacle-finger closure
errors.

An error menu is displayed whenever an end-

effector component fails to function properly. Selec-
tions in each of the component error menus have been

determined through experience. The error-recovery

menu for the receptacle fingers (grippers) is shown

in figure 19. Each error menu has an exit selection

(Quit) which allows ternfination without correction
of the component error. This exit results in an auto-

matic reversal of the action of any end-effector func-

tion currently in progress. The error menu contains

a hidden option (Go on anyway) and is only available

when the supervisor uses a password. This option is
selected if the supervisor considers the error to be of

minimal consequence and decides to assume respon-

sibility and continue the assembly operation. The

system interprets this response as if the error were
corrected.

There are three ways to exit the error-recovery

routine. An automatic exit results upon successful
resolution of the error. The other exit conditions

(Quit and Go on anyway) are supervisor-controlled
as discussed above. The software remains in the er-

ror routine until one of these conditions occurs. For

the recovery options, the status of the problem com-

ponent sensor is checked to determine whether the

recovery action was successflfl. The POP command
is used when the locking nut socket is not seated.

The slight turn helps to align the socket with the

nut. Descriptions of the recovery options are listed
below:

CYCLE

TOGGLE

LATCH ANYWAY

UNLATCH ANYVCAY

CW POP

CCW POP

Reverses the command

and then reexecutes it

Reverses the command

that failed

Latches the strut

gripper, even if the
grippers are not closed
on a strut

Unlatches a strut from

the end effector

Turns the nut-driver

motor one quarter turn
in a clockwise direction

Turns the nut-driver

motor one quarter turn
in a counterclockwise

direction



DITHERARM

BALANCE FTS

ADJUST

Moves tile robot arm

through small cyclic

motions in a particular

direction in an attempt
to jar loose a stuck

component

Reduces the loads on a

colnponent by slightly

repositioning tile robot,
arnl

Manual repositioning

of tile robot arm by

tile supervisor

Data Content and Modification

The assembly system conditions are stored in a

shared data base, which contains two basic types
of information the current status of all elements

of the assembly system and structure, and the pre-
determined positions that are used to direct and con-
trol the robot arm and motion bases. The current

status information is inaintained continuously to rep-

resent the physical state of the system at. any point

in time and to thus ensure continuity of system oper-

ations. The status is updated automatically during
test runs. The predetermined position information
for the robot arm and motion base includes loca-

tions and orientations that are associated with the

installation of individual struts. The predetermined

position information also describes the collision-free

paths that the robot arm and motion base follow be-

tween the canister and the various installation posi-
tions in the truss.

Data Description

Figure 20 illustrates the data section that is bro-

ken down into tile following elements: motion-hawse

position, strut type, robot-arnl status, tray status,

tray handle locations, current strut status, current
motion-base position, and end-effector status.

The MOTION_BASE_POSITION record stores

the x, y, and 0 values (X_Car, YCar, and Turntable)
for the predetermined motion-base locations that

establish the positioning relationship between the

robot arm and the truss. There are 70 unique

motion-base positions for the 102-member truss. In

an attempt to minimize motion-base moves, many
struts are installed with the motion base situated at

the same position. Also, the 120 ° rotational symme-

try of the structure allows the x and y carriage po-
sitions to be repeated for comparable struts at three
locations around the structure.

The STRUT_TYPE record contains all the data

necessary to describe the installation and storage
conditions for each of the 102 strut members. Each

strut is identified and accessed by a unique alpha-

numeric designation (Name). The current location
of the strut (Where) is accessed by the system before

ally strut operation can be initiated. The system

nmst know if the strut is currently in its tray, in-

stalled in the structure, or held by the end effector.

When a strut is selected for installation, the system

refers to a list of struts (Connect_To), which defines
those struts that must be installed in the truss prior
to installation of the selected strut. This check is a

safety feature to ensure that the required initial con-
ditions for installation of the selected member are

satisfied. The secondary reference to tile location

status (Where) of each strut on this list certifies that
all required struts are installed. The installation po-

sition (Loc In Cell) identifies which of the 19 pre-

determined paths is to be followed to install or re-

nlove a strut. The end of a strut with a preattached

node (Node_End) indicates which nut driver on the
end effector nmst not be operated while installing the

strut. If the end effcetor nmst capture another node,

the end to be captured is specified (CapEnd). Tile

end condition of the installed strut (Cantilew_r) is

used to establish predefined modifications t.o tile path
which must occur during the capture sequence. Be-

cause of tray packing limitations, a preattached node

may not be located on the correct end associated

with a direct path entry. This condition is identified
(Flip) and initiates a robot-arm comnland to rotate

the strut 180 ° at the transition point in the strut in-

stallation path. The assigned tray and slot positions

(Tray, Slot) are required to replace or insert a strut

in the tray. Each state in the predefined path defines
the robot-arm positions (State Pos). The collision-

avoidance algorithm requires that the end position

of the core struts (X_End, Y End) be defined for
computation of potential collision conditions.

The ROBOT_STATUS record contains the cur-

rent positioning point for all strut paths (State,

Cond State). The current strut in the robot
arm (Strut Now), the strut in the canister to be

retrieved (Strut_Getting_Now), or the last strut

that was installed or removed by the robot arm

(Strut_JustHad) arc represented in this record.

The TRAY_STATUS record maintains all infor-

mation pertaining to the strut storage trays. The

path-state identifier (Tray_State) and the objective

of the move (TrayMode) are used to store or retrieve

a tray. The number of tile tray (Current_Tray) that
struts are being removed from or stored in is also

maintained. The approach points to the working
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canister(Working Ap) andto the storagecanister
(Storage_Ap)areavailablein thisrecord.

TheTRAY_HANDLE_LOCATIONSrecordcon-
rains the tray handlepositionin the workingand
storagecanistersutilized by the robot ann when
transf(_rringthemfromone,canisterto theother.The
positions(StorageLoc,Working_Lot)arethesets
of x, y, z, roll, pitch, and "_'aw needed by the robot
arnl.

The (LRRENT STRUT record contains infor-

mation pertinent to the end effeetor for the strut

that is currently held by t.tH, end effeetor. The sta-
tus variables indicate whether the nut-driver sock-

ets are seated to lock or unlock the joint connec-

tor (Left Seat, Right_Seat) and indicate the current
status, locked or unlocked of the joint (Left_Nut,

Flight_Nut).

The CURRENT_MOTION_BASE_POSITION

record slores the current x, y, and0(X Car, Y_Car,

and Turntable) positions of the motion bases.

The END EFFECTOR record maintains the cur-

rent status of tt]e various components on the end ef-

f(,ctor. The status of the receptacle fingers at. each

end of the end effector (Left Receptacle Finger,
Right_Receptacle Finger) indicates whether they

are open or closed. The position of the platform
(Platform) and the condition of the strut holders

(Latch) are also maintained. The last data item is

the location needed by the robot arm to store and

retrieve the end effector (Storage Pos).

Apt)endix C provides an examt)le of the data

interdepend(mc(_ and how t h(_ data are used by the

software system to t)erform its functions.

Sy,st_:m Data Modificatiou

Data examination and modification is available

through selection 1 (System configuration) on the

main metal (fig. 7). This selection provides a direct

method for accessing the status of any component
and evaluating current conditions. Upon selection of

this option, a menu displays the status of the robot

arm, current strut, and end effeetor. If the supervi-

sor needs to change a value, a selection of that item
in the menu results in a list of possible values. When

changing a value that affects other data items, the

supervisor is forced by the software to change them

all. t_br exmnple, if the strut location is changed to
the robot arm, the end-effector status data must re-
flect that the end effeetor is latched to a strut. To

change the value of any data, the supervisor must

enter a password. This password protects the data
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from haphazard modifications by inexperienced su-
pervisors and permits complete flexibility in control

of variables for system setut) and testing.

Software Design Evaluation

Four complete assembly and disassembly tests
of the 102-member truss structure have been con-

ducted. The supervised autonomy mode of operation

has proved effective and has allowed the supervisor

to correct almost all the assembly problems from the

console. The successflfl performance of this relatively
rudimentary research prototype is encouraging for in-

space asseml)ly and construction.

The software program is a major factor in the

overall system success. The software design require-
ments have been met, and the software hierarchical

structure has remained essentially unchanged, while

continuing to support system evolution, especially for

error-recovery procedures and system upgrades such
as the end-effector microprocessor discussed in ap-

pendix A. The hierarchical structure agrees with the

NASA/NBS Standard Reference Model (NASREM)

architecture (appendix D) and fits the assembly
problem well. A key factor in the success of the

program was a realistic representation of the sys-

tem hardware and assembly procedures in data struc-
tures. This representation is difficult, to achieve and

requires detailed consideration of the assembly prob-

lem. The benefits of an expert systein implementa-

tion (appendix A) in tertns of development time and
code size are apparei_t.

Supervisor displays that depict the hierarchical

commands and assembly situation in real time ade-

quately provide status, context, and trace informa-
tion for monitoring and error recovery. No formal

human-factors studies have been performed, but an
excellent test-bed for evaluation studies exists. A

large proportion of the assembly software ix con-
cerned with keeping the person in the loop, particu-

larly with providing full access and control at every
level.

Implementation of a distributed system architec-
ture and a teleoperator mode of operation needs to

be addressed. The assembly software is just. begin-

ning to address a distributed system architectm e, but
no consideration has yet been given to task inter-

dependence and scheduling. On-line path and task

planning is necessary for a truly viable in-space ap-

plication to be possible. A teleoperator mode for

supervisor intervention is critical for in-space error

recovery, because the supervisor must have complete
control over the assembly operation at. each level.



Concluding Remarks

An initial versionof anautomatedassemblysys-
tem for trussstructureshasbeendevelopedandis
currentlyoperational.Experiencegainedduringthe
assemblyand disassemblyof a 102-membertetra-
hedraltrussdemonstratessuccessfulperformanceof
theautomatedsystemandof thesupervisorinterface
usedfor monitoringandintervention.Basedon this
experience,the softwaredesign,hierarchicalstruc-
ture,andinternaldata representationdescribedare
typicalof whatisrequiredforautomatedoperations
andshowpromisefor usein projectedin-spaceas-
semblyandconstructionprojects.Thesoftwarere-
quirementsanddesignserveasa model,aswellas
a test-bed,for thedevelopmentof softwarerequired
by moresophisticatedautomatedsystems.

Thesoftwaredesignprocessemphasizedthe im-
portanceof definingthe interfacerequirementsand

theroleof thesupervisor.Theinterfacebetweenthe
automatedsystemandthesupervisorprovidesacon-
cisemethodof displayingpossiblecommandselec-
tions,accessto all devicelevels,andcurrentsystem
taskexecutionandstatus.Thesupervised-autonomy
modeofoperationmakessystemsupervisionfromre-
motesites,suchasthe ground,feasible.This mode
ofoperationminimizesthedemaudfor limitedastro-
nautresources.

Hardwaretestexperienceidentifiedunanticipated
but critical automatedsysten_capabilities,suchas
theneedto pauseandreversetheassemblyprocess.
The testingalsounderscoredthe valueof a well-
informedsupervisorin anyautomatedoperation.

NASALangleyResearchCenter
Hampton,VA23665-5225
May19,1992
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Appendix A

Implementation

Theassemblysystemis managedby severaldig-
ital computersthat areseriallyconnectedthrough
RS-232communicationlines. The a(tministration,
assembly,anddevicelevels(fig.6),andtheoperator
interfacefunctionsresideona minicomputerandare
implementedin FORTRAN.Component-levelfunc-
tions resideon auxiliarycomputers.Thesoftware
designwasdevelopedindependentlyof a computer
hardwareconfigurationandhasbeenrunona nun>
berofdifferentcomputerarrangements.All commu-
nicationsarepassedthroughtheminicomputer,even
thoughfunctionallythey might be issueddirectly
fromonemachineto another.Thedatapassedbe-
tweenprocessorsarewritten in ASCII format.This
human-readableformatallowsstand-alonecheckout
to beperformedonsimpleternfinals.

The motionbaseis controlledby a commercial
indexerboardhostedon an Intel 80286basedpro-
cessor.Commands to this processor are generated

by a BASIC program that serves only as a transla-
tor for the positioning commands. All the collision-
avoidance calculations are performed in real time on

the minicomputer.

TILe robot-arm motions and end-effector compo-

nent commands are controlled by a BASIC program

on a 68000 processor. The robot-arm processor stores

data locally (all the z, 9, z, roll, pitch, and yaw po-

sitions) and describes the operational position defi-
nitions and paths used for the assembly operations.
This local data storage minimizes the amount of in-

formation passed between the processors.

Two major changes have been made to the ini-

tim iinplementation a software language substitu-
tion and a computer hardware addition. As a re-
sult of the modularity of the design, the upgrades

were easily performed. The software change entailed

the development of the robot-arm, path-state logic as

an expert system; this system replaced the original
FORTRAN implementation. The computer upgrade
that was initiated involved moving the device and

component level for the new end effector to a micro-

processor. The device level of tile current end effec-
tor resides on the minicomputer, and the component

level resides on the robot-arm processor. Both these

upgrades are discussed in more detail in the following
sections.

Expert System Implementation

Traditional programining languages such as FOR-
TRAN and BASIC are not well suited for encapsu-

lating the knowledge required for complex assembly
sequences. Preliminary investigations into the appli-

cation of expert system technologies to perform the

decision-nmking portions of the software system have

been very encouraging.

The Knowledge Engineering System (KES) ex-

pert system development tool was utilized in this

implementation (ref. 12). Rule-based, backward-
chaining techniques are applied to accomplish the de-

cision making or inferencing. A set of antecedent/

consequence (if/then) rules have been fornmlated

which capture knowledge pertaining to the path se-
lection for strut assembly and disassembly. These

rules, along with attributes and procedures, are con-
tained in a file known as the knowledge base. Back-

ward chaining (goal-directed infexencing) applies de-
ductive reasoning to the specified rules, whereby

a given conclusion follows directly from a known

premise.

The path from the grasp-point canister

(GP_CAN) to the grasp-point (GP) is decomposed
into a nulnber of individual states. (See fig. 12.) The

current location of the strut, the current location of

the robot arm, the type of strut being manipulated,

and the task specified by the automated system or

the supervisor (via menu selection) are all factors in
determining the sequence of states that make up the

robot-arm path. Rules haw_ been developed to im-

plement the state logic shown in figure 12. These
rules determine the direction of the robot-arm mo-

tion and any necessary conditional states between
AP and GP. The direction of robot-arm motion is

determined from the current location of the robot

arm, the current status of the strut, and the task or

target state entered by the supervisor. Conditional
state rules are invoked when performing node capture

operations between AP and GP and are primarily de-
pendent upon strut cantilever conditions. Figure 21

contains examples of conditional state rules. Once a
move has been determined, forward infcrcncing is ini-

tiated to build the command string, which is sent to

the robot arm. The KES forward inferencing uses

event-driven procedural techniques that, like con-

ventional programming languages, were structured

sequentially.

This expert-system tool provides an embedding

technique for integrating expert systems with proce-
dural language code. The procedural code is able

to send, receive, and modify data from a knowledge

base through the use of run-time functions and spe-

cial data types. The embedding technique giw_s the

automated assembly system access to expert-system

techniques for decision making, but it leaves the ex-

isting operator interface intact. An expert-system
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solutionto thepathdeterminationportionof theal-
gorithmwasincorporatedwith little difficultybyuti-
lizingtheexistingmenustructuresandinput/output
(I/O) handlingcapabilities.

Theconciserepresentationaffordedby'tile rule-
basedexpertsystemreducedthe linesof codesig-
nificantlyand increasedthe maintainabilityof the
software. Approximately850 linesof FORTRAN
codewerecondensedinto 20simplifiedKESrules.
Evenduring the early stagesof the development,
modificationsandupgradeswereperformedrapidly'.
The successof the expert-systemimplementation
haspromptedthe applicationof thesetechniques
to othermodulesof the assembly-systemsoftware,
suchastray handling,errorhandling,andcollision
avoidance.

End-EffeetorMicroprocessor
Implementation

All end-effectorfunctionsfor tile newendeffec-
tor arenowimplementedonamicroprocessor.This
end-effectorsoftwarelogicisimplementedin the "C"
programminglanguageonaSiemensSAB80535mi-
croprocessor.The developmentsystemselectedis
ANSI C compatibleand includeslanguageexten-
sionsthat provideaccessto all processor-dependent

features.The SAB 80535microprocessorsupports
analog-to-digitalconversionandbit I/O. The soft-
wareisresponsibleforbothsequencecontrolandsen-
sormonitoringfor all end-effectoroperations.The
softwaremaintainslocaldatathat describethe sta-
tusoftheend-effectorandsensorcomponentsonthe
microprocessor.

The end-effectormicroprocessorimplementsthe
deviceand componentlevelsof the assemblysoft-
ware. It decomposesthe assenfl)ly-orienteddevice
commands(INSTALL,REMOVE,ACQUIRE,and
DROP)intocomponentcommandsandmonitorsthe
sensors.The microprocessorintegratedeasilyinto
the automatedassemblysystemas a result of the
designhierarchyandmodularity.By standardizing
thesefunctions,multipleendeffectorscanbeaccom-
modatedthat performsimilarfunctions,suchasthe
INSTALL,ondifferententities.Thus,endeffectors
that install strutsandpanelsall look the sameto
tile automatedassemblysystem. Theend effector
onthemicroprocessortakesadvantageof theexperi-
encegainedin thebaselineautomatedassemblyop-
erations.Reference13containsadditionaldetailson
tile end-effectormicroprocessorimplementationand
software.
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Appendix B

Glossary

actuator

backward-chaininginferencing

component

embedding

expertsystem

knowledgebase

knowledge-basedexpertsystem

RS-232communicationline

rule-basedexpertsystem

degreesof free(toni

supervisedautonomy

top-downdesign

devicethat appliesforceto movea mechanisln

goal-directedapproachof decisionmaking;thepursuitof agoalmay
requiretiledeterminationof substates,whichthemselvesmayrequire
asubgoalsolution

anyoneof theend-effectorhardwaremechanisms

combiningconventionalprogrammingapplicationswith anexpert
systemto forma singleexecutableprogram

a computerprogramthat usesknowledgeandreasoningtechniquesto
solveproblemsthat normallyrequiretheservicesof atrumanexpert

filethat containsthefactsandheuristicsthat representhuman
expertiseabouta specificdomain

subsetof thegeneralareaof expertsystemsin whichanexpert's
knowledgeabouta classof problemsis maintainedin onefile (knowl-
edgebase);a separatereasoningmechanismoperatesonthis knowl-
edgeto producea solution

a communicationsprotocolfortransmittinginformationbetweentwo
computersin aserialmode(onebit at a time)

systemthat usesantecedent/consequence(if/then) constructsto
representknowledge

numberof independentpositionvariablesthat wouldhaveto be
specifiedto locateall partsof a mechanisin

a modeof systemoperationin whichoperatorattentionor interven-
tion isrequiredonlywhena problemhasoccurredthat cannotbe
correctedby theautomatedsystem

a methodologythat beginsby layingout anoverallprogramstructure
andsuccessivelydefininglowerlevelsin increasingdetail
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Appendix C

Example of Data Accesses and Modifications

The followingexampleshowshowthe datadefinedin figure20areactuallyreferencedandusedby the
software.Theactualmenuitemsfromfigure7 are shown ill bold. Only the forward execution of tile coinmand

stream is shown. No pause or reverse sequences are included. To keep the example as simple as possible, it

is assumed that everything passes the appropriate tests necessary to contilme execution. The strut in this

example is of the direct installation case type.

Conllnands

FETCH AND CONNECT:

Input strut name to fetch

Check data to verify" valid name

Veri_' necessary struts installed

Update data

FETCH:

Verify no strut currently in robot arm

Veri_' strut location

Check access to tray; do one of the following:

1) Current tray contains strut

2) Next tray contains strut

ROBOT: (Move tray to storage)
MOVE TRAYS:

TO STORAGE:

TRAY APPROACH POINT

Verify current state
Move robot arm

Update data
TRAY POINT

Verify current state

Move robot arm

Update data

Pick up tray

Similar to ACQUIRE

Update data

TRAY APPROACH POINT

Verify current state

Move robot arm

Update data
STORAGE APPROACH POINT

Verify current state
Move robot arm

Update data

STORAGE POINT

Verify current state
Move robot arm

Update data

Data accessed

STRUT_TYPE.Name
STRUT TYPE.Connect To

ROBOT_STATUS.Getting_Now = Strutname

ROBOT_STATUS.Strut_Now = NONE

STRUT_TYPE.Where = CANISTER,

STRUT TYPE.Tray =

TRAY_STATUS .Current_Tray

STRUT_TYPE.Tray >

TRAY STATUS.Current_Tray

TRAY_STATUS.Tray_Mode = STORING

TRAY_STATUS .Tray_State

TRAY_STATUS.Tray_Ap

TRAY_STATUS.Tray_State = TRAY_AP

TR AY_STATU S.Tray_St ate

TRAY_HANDLE_LOCATIONS.Working_Loc

TRAY_STATUS.Tray_State = TRAY

TRAY_STATUS.Current_Tray decremented by 1

TRAY_STATUS .Tray_State

TRAY_STATU S. Tray_A p

TRAY_STATUS.Tray_State = TRAY_AP

TRAY_STATUS .Tray_State

TRAY STATUS.Storage_Ap

TRAY_STATUS.Tray_State = STORAGE_AP

TRAY STATUS.Tray_State = STORAGE_AP

TRAY_HANDLE_LOCATIONS.Storage_Loc

TRAY_STATUS.Tray_State = STOR
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Droptray
Similarto DROP

STORAGE APPROACH POINT
Veri_ currentstate
Moverobotarm
Updatedata

TRAY APPROACH POINT
Verifycurrentstate
Moverobotarm
Updatedata

3)Exit
ROBOT: (),loverobotarmto canisterpoint)

STRUT POSITION:
CANISTER APPROACH POINT:

Verifycurrentstate
Moverobotarm
Updatedata

STRUT POSITION:
CANISTER GRASP POINT:

Verifycurrentstate
Move.robotarm
Updatedata

END EFFECTOR: (Pickupstrut fromtray)
ACQUIRE:

Verify strutcurrently in canister

Check latches

UNLATCH STRUT

Update data

Check platform

EXTEND

Update data

CANISTER BALANCE

Check latches

LATCH STRUT

Update data

CANISTER BALANCE

Check platforms

RETRACT

Update data

ROBOT: (Move robot arm to canister approach

point)
STRUT POSITION:

CANISTER APPROACH POINT:

Verify current state
Move robot arm

Update data

TRAY_STATUS .Tray_State

TRAY_STATUS.Storage_Ap

TRAY_STATUS.Tray_State -- STORAGE_AP

TRAY_STATUS .Tray_State

TRAY_STATUS.Tray_Ap

TRAY_STATUS.Tray_State = TRAY_AP

TRAY_STATUS.Mode = NONE

ROBOT_STATUS.State

STRUT_TYPE.State_Pos

ROBOT_STATUS.State = AP_CAN

ROBOT_STATUS .State

STRUT_TYPE.State_Pos
ROBOT STATUS.State = GP CAN

STRUT TYPE.Where = CANISTER

END EFFECTOR.Latch = LATCHED

END_EFFECTOR.Latch = UNLATCHED
END EFFECTOR.Platform = RETRACTED

END_EFFECTOR.Platform = EXTENDED

END EFFECTOR.Latch = UNLATCHED

END_EFFECTOR.Latch = LATCHED

END EFFECTOR.Platform = EXTENDED

END EFFECTOR.Platform = RETRACTED

STRUT TYPE.Where = ARM

ROBOT_STATUS.Strut_Now = Strutname

ROBOT_STATUS.Getting_now = NONE

ROBOT_STATUS .State

STRUT TYPE.State_Pos

ROBOT_STATUS.State = AP CAN
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CONNECT:
Verifystrut currentlyin robotarm
Verifyrobotarmat canister approach point

MOTION BASE: (Move motion base to

assembly position)

DEFINED LOCATION:

PICK LOCATION:

ASSEMBLY LOCATION:

Check current position
Perform collision avoidance

Determine execution order

Move motion base

Update data

ROBOT: (Cheek robot arm position)
STRUT POSITION:

Check current state

END EFFECTOR:

COMPONENT COMMANDS:

(()pen receptaele fingers)

Veri_, receptacle finger status

OPEN:

LEFT RECEPTACLE FINGER

Update data

Verify reeet)taele finger status

OPEN:

RIGHT RECEPTACLE FINGER

Update data

ROBOT: (Move robot arm to grasp point

from canister approach point)
STRUT POSITION:

TRANSITION POINT:

Verify current state

Move robot arm

Update data
APPROACH POINT:

Verify current state

Move robot arm

Update data
GRASP POINT:

Verify, current state

Move robot, arm

Update data

STRUT_TYPE.where = ARM

ROBOT_STATUS.State = AP_CAN

MOTION_BASE_POSITION.(X_Car, Y Car,

Turntable)

CURRENT_MOTION_BASE_POSITION

STRUT TYPE.(X_End, Y_End)

CURRENT MOTION BASE POSITION =

MOTION_BASE POSITION

ROBOT_STATUS.State

END_EFFECTOR.Left_Receptacle_Finger =
CLOSED

END_EFFECTOR.Left_Receptacle_Finger =
OPENED

END_EFFECTOR.Right_Receptacle_Finger =

CLOSED

END_EFFECTOR.Right_Recet)tacle Finger =
OPENED

ROBOT_STATUS. State

STRUT TYPE.State Pos

ROBOT STATUS.State IP

ROBOT_STATUS .State

STRUT_TYPE.Stat, e_Pos

ROBOT_STATUS.State = AP

ROBOT STATUS.State

STRUT TYPE.State Pos

ROBOT STATUS.State = GP
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END EFFECTOR: (Installstrut intostructure)
INSTALL:

Verifystrut currentlyin robotarm
Verifyreceptaclefingerstatus

CLOSE:
LEFT RECEPTACLE FINGER
Updatedata

Verifyreceptaclefingerstatus

CLOSE:
RIGHT RECEPTACLE FINGER
Updatedata

BALANCE FTS (Balancetheforceand
torques)
EXTEND

Updatedata
LOCK:

LEFT NUT
Veri.fyleft nutstatus
Put socketovernut
Verifyseatingof nut
Updatedata
Locknut
Updatedata

LOCK:
RIGHT NUT

Verifyrightnut status
Put socketovernut
Verifyseatingof nut
Updatedata
Locknut
Updatedata

Checklatches
UNLATCH STRUT

Updatedata
Checkplatforms
RETRACT

Updatedata
Verifyreceptaclefingerstatus

OPEN:
LEFT RECEPTACLE FINGER

Update data

Verify receptacle finger status

STRUT_TYPE.Where = ARM

END_EFFECTOR.Left_Receptacle_Finger =
OPENED

END_EFFECTOR.Leff_Receptacle_Finger=
CLOSED

END_EFFECTOR.Right_Receptacle_Finger=

OPENED

END_EFFECTOR.Right_Receptacle_Fingcr =
CLOSED

END_EFFECTOR.Platform = EXTENDED

CURRENT_STRUT.Left_Nut = UNLOCKED

CURRENT_STRUT.Left_Seat = SEATED

CURRENT STRUT.Left Nut = LOCKED

CURRENT_STRUT.Right_Nut = UNLOCKED

CURRENT STRUT.Right Seat = SEATED

CURRENT_STRUT.RightNut = LOCKED

END_EFFECTOR.Latch = LATCHED

END_EFFECTOR.Latch = UNLATCHED

END_EFFECTOR.Platform = EXTENDED

END_EFFECTOR.Platform = RETRACTED

END EFFECTOR.Left_Recept acle_Finger =
CLOSED

END_EFFECTOR.Left_Receptacle Finger =
OPENED

END_EFFECTOR.RightReceptacle_Finger =
CLOSED
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OPEN:
RIGHT RECEPTACLE FINGER

Updatedata

ROBOT: (Moverobotarmto canisterapproach
point fromgrasppoint)

STRUT POSITION:
Check current state

APPROACH POINT:

Veri_' current state
Move robot arm

Update data

TRANSITION POINT:

Verify current state
Move robot arm

Update data

Input the strut name to fetch

Check data to verify valid strut name

Verify necessary strut, installed

Update data

END EFFECTOR: (Close receptacle fingers of

all ends with no nodes)
COMPONENT COMMANDS:

Close side_l receptacle finger

Verify receptacle finger status

CLOSE:

SIDE 1 RECEPTACLE FINGER

Update data

Close side_2 receptacle finger

Verify receptacle finger status

CLOSE:

SIDE 2 RECEPTACLE FINGER

Update data

ROBOT: (Contimm robot, arm move to canister

approach point)
STRUT POSITION:

CANISTER APPROACH POINT:

Verify current state
Move robot arm

Update data

END_EFFECTOR.Right_Receptacle_Finger --
OPENED

ROBOT_STATUS.State

STRUT_TYPE.State_Pos

ROBOT_STATUS.State = AP

ROBOT_STATUS .State

STRUT_TYPE.State_Pos
ROBOT STATUS.State = IP

END_EFFECTOR.Side 1 Receptacle_Finger =
OPENED

END_EFFECTOR.Side 1 ReceptacleFinger =
CLOSED

END_EFFECTOR.Side 2 ReceptacleFinger =
OPENED

END_EFFECTOR.Side 2 ReceptacleFinger =
CLOSED

ROBOT_STATUS.State

STRUT_TYPE.State_Pos

ROBOT STATUS.State= AP CAN
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Appendix D

Comparison With NASREM

Althoughthe automated-assemblysystemsoft-
wareis developedfrom the systemrequirements,
theresultingprogramstructurecloselyresemblesthe
NASA/NBSStandardReferenceModel(NASREM)
architecture(ref. 14). The NASREM architec-
ture is depicted in figure 22, and the correspond-

ing automated-assembly software structure is shown

in figure 23. The automated-assembly hierarchy

corresponds to the four lowest levels of NASREM.

For example, the NASREM primitive level can be
compared with the automated-assembly device level,
which includes the robot arm, the end effector, and

the motion base. (See fig. 6.) The NASREM
element-move level corresponds to the assembly level

in the automated-assembly hierarchy. Figure 23 in-

cludes only those functions at each level that are

needed in the automated-assembly application. Typ-
ical supervisor commands at each level and error-

recovery actions are included for completeness.

Hardware actions and sensor processing occur at

the component (NASREM servo) level. Error con-

ditions are resolved by either supervisor intervention

or automated actions at the component level. Un-
resolved errors are passed back through the hierar-

chy, and an automatic reverse of the tasks performed

at each level is initiated. For the assembly task, al-

ternative actions, which take the form of substituting

other struts for failed members, are available only, at
the administrative level. A use of alternate struts

requires replanning the assembly sequence.

Aside from the component level, the only other

testing is performed at the assembly level. These
tests involve physically exercising the locking nut im-

mediately after a strut is picked up from the canister
to insure that it can be installed. Another test is

performed immediately after locking a strut into the

structure by attempting to retract the platform be-
fore unlatching in order to verify the integrity of the

joint lock. A failure of either of these tests would
result in the selection of an alternate strut.

The world model information base is updated

at two levels the device level and the assembly
level. At the device level, the end-effector status

model is updated at the successful completion of

each component action. At the assembly level, the
truss-structure model and the storage-canister status

are updated with the installation or removal of each
strut.

The NASREM architecture provides good con-

ceptual agreement with the automated-assembly ap-

plication, although not all activities have an entry' at
every level. The hierarchical model does provide a

particularly concise display for supervisor visualiza-

tion. The hierarchical structure is capable of sup-

porting several assembly operations by providing a
standard interface between the levels.
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(a) Proposed astronomical observatory.

L-92-25

L-90-4776

(b) Concept for a Mars transfer vehicle and aerobrakc.

Figure 1. Artist's conception of future space missions.
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Robot arm End effector

Trays with
Storage canister_ __ .

_ _v_7__-truss struts

Truss __--_--_____/Working canister

Y-motion base

O _'_ X-motion base

Rotating-motion base

(a,) Schematic.

L-90-5053

(b) Photograph.

Figure 2. Langley Automat,ed Structure Assembly Laboratory.
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Bottomface

Corestrut

Node

Figure 3. Truss geometry.

L-88-10,307

Figure 4. Truss node and connecting joints.

L-90-11104
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_-Joint
receptacle

!
i

Truss node --__

Strut holder -_

(a) Schematic.

L-89-4991
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(b) Details of mechanical system.

Figure 5. End-effector tool.
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stem conf _l.+r.atio
2. AUto build

3, ASsembly functions

4. File manipul

5, Help

6, Quit

CUrrent sta us

__", Data,
:3, SImu I

4. Help

5, Quit

Robot stat
r'ut sta'

3, End effect

4. Help

5. Quit

Menu item? 1

Menu item? 1

Menu item? 2
Menu item?

Robot : OFF

STRUT STATUS

Name

CANtilever

2 Tray
3 SLot

4 End with node

5 CAPture end

6 Where

7 Flip
8 Node direction

R2C616_4
FIXED

3

5

NONE

NONE

ARM

UP_NORMAL

NONE

9 More information

18, Quit

Robot State: AP_CAN

Sub_state: none

Strut Name: R2C6/6_4 in hand

Strut Status: Where Cantilever

UP_NORMAL ARM FIXED

Tray: 3 Slot: 5 Path: 12_2

Figure 8. Illustration of hierarchical menu overlay.

I, System configuration
2, AUto build

:3, A!-i:-;emb fu

FETCH _r,d cor, nec: str.tlt4, File maniput

5, Help

6, Quit
4

5

6

7

8

REMOVE Arld stor
I

FETCH Strut IMove Robot To:

STor,e str,ut I _

COnnect str DOUBLE EE |ach point

REMOVE Stru i
I

Help x istructureQuit 3. Exte [I, Left scar ucture

4.Retrl le
5, LOokl3, Help I

6, UrtLO/4, Quit I7. LFItc
8. UNLAtch strut t).L)I) I).1)13

9. Help AP_CAN
18, Quit none

R2C6/6_4

Strut Status: ilhere

IUP_NORMAL CANISTER

Tray: 3 Slot: 5 Path:

Menu item? assemb

Menu item? fetch and connect

getting
Cantilever

FIXED

12_2

Figure 9. Menu display for automated composite command (fetch and connect).
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_ , System conf_uratiol
2. AUto build

3. ASsembly functions

4. Fi!e manipu_

5, Help

6. Quit

CUrrent status

File name

? test,command

Menu item?

2. Data,
3, Slmul

4, Hetp

5. Quit

ingI
I. Robot status I
2, Strut status I13. End effector status

4, Help
5

- CorlrIANDFILE ERROR MENU

current fine : 3

current command', change strut

next command : tray

CORrect current command

Re-execute current command

CONtinue execution with current command

Execute next command and continue
Increment command file commands

Abort command file execution

Figure 10. Display of command-file error menu.

IP

AP CAN

AP

GP

- _/-'Storage-

/ tray canister

GP_CAN

Figure 11. Diagram of robot-arm states for strut paths.
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Strut instoIlation and removal:
1. Direct
2. Capture sequence
3. Pyramid completion
4. Free
End-effector actions:
a. Capture or release second

_ __ . cantilevered node
Ca-n2_ ---"Ca--I; b. Close fingers on end with no node

.. _._ "_ L. 211,,_,_1 c. No nodes on either end of strut,
_ close remaining end

\ _ d. Capture or release end of strut
-td,I,LOpen_,_,.-- - -1 \ _/ e. Nostrutin hand

CANHGP CANI' 1_/''4 -- 4__]1_ _

Figure 12. Complete robot-arnl state diagram and logic. Dashed boxes indicate conditional states.

I, System
2, AUto buitd
3. ASse_:b[ ful

4, File manipul

5. Hetp

6, Quit

raFl_

D r'ect If_ode

Menu item? 3

Menu item? 9

Menu item? 3

Menu item?
m

conf igurat ion I

I. FETCH

2, REMOVE And stor

3. FETCH Str.ut

4, STore strut

5. COnnect strut

6. REMOVE Strut

7, Help

8. Quit

And connect strut

Move Rob

I. CAIIIS

2. CANIS

4, Appro

5, Grasp
6. Direc

7, Help
8. Quit

ROBOT PAUSE MENU

[iProceed

Adjust
Reverse

MB: -88.88 8,88 8,Oe
Robot State: AP_CRN_TO_IP

Sub_state: none
Strut Name: R2C6/6_4 getting
Stput Status: Where Cantilever

UP_NORMAL INSTALLED FIXED

Tray: 3 Slot: 5 Path: 12_2

Figure 13. Supervisor display of robot-arm pause menu.
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Storage_AP

Storage

Storage-tray
canister

Figure 14. Diagram of robot-arm states for tray moves.

Tray_AP

Tray

Working-tray
canister

Obstructing
strut

Strut end _'1 .

Tray ,..._..._/ . rut

handles --_ "
Tray _ t..J ( K

Carriage --_

Robot -_
x

_- Turntable

)

r Y

x-axis reference line
V

Figure 15. Descriptive diagram of collision avoidance.
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Case 1

%

II

I II

,,_,- - _) J.
II I I I I

,-y

Case 2

x _

end ' *'_,_,- - __
I I i i I
w.

--y

I

I

_1

Case 3

Rcarr

_y

×

II

I I I

,,_, )_ ,
I I I I,..., I I

Figure 16. Carriage collision logic for y-axis move. Dashed lines are desired position of carriage.
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Case 1

a:

Case 2

X
Y

Case 3

X

)4

_'end

%

Vy

Figure 17. Carriage collision logic for turntable rotation. Dashed lines are desired position of carriage.
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I Order
of

execution

_uence

Unlatch

Extend

Balance FTS

Latch

Balance FTS

Retract

Complete

Reverse ACQUIRE sequence

Retract

Unlatch

Balance FTS

Extend

IOrder
of

execution

(a) ACQUIRE command.

Order
of

execution

Figure 18.

DROP sequence

Extend

Balance FTS

Unlatch

Retract

Complete

Reverse DROP seouence

Retract

Balance FTS

Latch

Balance FTS

Extend

Order
of

execution

(b) DROP command.

Operational sequences for end-effector assembly functions.
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I Close(L}

10rd2u fer Close(R}
ex tlon BaLance FTS

Extend

Lock(L}

Lock{R)

Unlatch

Retract

Open(L)

Open(R}

Complete

Reverse INSTALL seauence

Open(L}

Open{R)

Retract

Unlock(L}

Unlock(R}

Check seating(L}

Check seating(R}

Latch

Extend

Unlatch

Balance FTS

Close(L}

Close(Pd

(c) INSTALL command.

REMOVE seouence Reverse REMOVE seouence

Close(L}

Close_J

Balance FTS

Unlatch

Extend

Latch

Open(L)

Open(R)

Retract

Unlatch

Check seating(L}

Check seatingtR}

Unlock{L}

Unlock(R}

Lock(L}

Lock{R}

Retract

Open(L)

Open(R)

Complete

Extend

Balance FTS

Close(L}

Close(R)

(d) REMOVE command.

Figure 18. Concluded.
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Record

MOTION BASE POSITION

STRUT TYPE

ROBOT STATUS

TRAY STATUS

Variable

X Car

Y--Car

Tl_rntable

Name

Where

Connect To

Loc In Tell

Node End

Cap End

C anti I eve r

Flip

Tray

Slot

State Pos

X, Y, Z, Roll, Pitch, Yaw

X_End, Y_End

State

Cond State

Strut Now

StrutlGetting_Now
Strut Just Had

Tray_State

TrayMode

Current_Tray

Working_Ap

X, Y, Z, Roll, Pitch, Yaw

Storage Ap

X, Y, Z, Roll, Pitch, Yaw

Description

Motion-base configuration

Carriage x position

Carriage y position

Theta angle in degrees

Strut description

Strut na_%e

Current strut location

Struts needed for support

Installation position in truss

End withnode

End to capture

End conditions of strut

Flip indication

Tray ntu_ber containing strut

Position in tray

Position for each robot state

Core strut end points for collision avoidance

Manipulator arm current mode

Robot path location

Substate point in a path

Name of strut in arm, if any

Name of strut in process of retrieving

Name of last strut installed

Current tray locations and mode

Path location

Current tray operation

Tray on top

Robot position for working approach point

Robot position for storage approach point

TRAY HANDLE LOCATIONS

Storage_Loc

X, Y, Z, Roll, Pitch, Yaw

Working_Loc

X, Y, Z, Roll, Pitch, Yaw

STRUT

Left Seat

RighLSeat

Left Nut

_gh_ _t

CURRENT MOTION BASE POSITION

X Car

Y--Car

T_rntable

END EFFECTOR

LeftReceptacleFinger

R/ght_Receptacle_Finger
Platform

Latch

Storage Pos

X, Y, Z, Roll, Pitch, Yaw

Robot position in storage canister

Robot position in working canister

Strut currently in arm

Nut-driver alignment status

Nut status

Motion-base configuration

Carriage x position

Carriage y position

Lazy SuSan theta angle in degrees

End-effector status

Left receptacle fingers status

Right receptacle fingers status

Status of platform

Strut holders status

Robot position for storing

Figure 20. Data variables and descriptions.
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